Inverse Prediction and Optimization of Flow Control Conditions for Confined Spaces using a CFD-Based Genetic Algorithm
نویسندگان
چکیده
Optimizing an indoor flow pattern according to specific design goals requires systematic evaluation and prediction of the influences of critical flow control conditions such as flow inlet temperature and velocity. In order to identify the best flow control conditions, conventional approach simulates a large number of flow scenarios with different boundary conditions. This paper proposes a method that combines the genetic algorithm (GA) with computational fluid dynamics (CFD) technique, which can efficiently predict and optimize the flow inlet conditions with various objective functions. A coupled simulation platform based on GenOpt (GA program) and Fluent (CFD program) was developed, in which the GA was improved to reduce the required CFD simulations. A mixing convection case in a confined space was used to evaluate the performance of the developed program. The study shows that the method can predict accurately the inlet boundary conditions, with given controlling variable values in the space, with fewer CFD cases. The results reveal that the accuracy of inverse prediction is influenced by the error of CFD simulation that need be controlled within 15%. The study further used the Predicted Mean Vote (PMV) as the cost function to optimize the inlet boundary conditions (e.g., supply velocity, temperature, and angle) of the mixing convection case as well as two more realistic aircraft cabin cases. It presents interesting optimal correlations among those controlling parameters. Introduction With rapid developments in fluid dynamics, numerical science and computer technologies, computational fluid dynamics (CFD) has become an efficient tool for indoor environment study and system design. Optimizing an indoor flow pattern according to specific design goals requires systematic evaluation and prediction of the influences of critical flow control conditions such as flow inlet temperature, velocity and angle. In order to identify the best flow control conditions, conventional approach simulates a large number of flow scenarios with different boundary conditions. Previous studies reveal advanced search and optimization algorithms such as genetic algorithm (GA) can effectively reduce the total number of iterations to reach an (or a group of) optimal solution(s) [1]. GA is an optimization algorithm that simulates natural evolution in the search of optimal solutions [2]. It has been applied to a variety of engineering design, parameter identification and system optimization. Efforts of
منابع مشابه
Multi-objective optimization of nanofluid flow in microchannel heat sinks with triangular ribs using CFD and genetic algorithms
Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...
متن کاملA Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size
The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...
متن کاملShape optimization of impingement and film cooling holes on a flat plate using a feedforward ANN and GA
Numerical simulations of a three-dimensional model of impingement and film cooling on a flat plate are presented and validated with the available experimental data. Four different turbulence models were utilized for simulation, in which SST had the highest precision, resulting in less than 4% maximum error in temperature estimation. A simplified geometry with periodic boundary conditions is de...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013